Welcome to Fang Gong’s Website 欢迎来到我的个人网站
About Me
Hi, I’m Fang Gong. I recieved my Ph.D. degree in Control Science and Engineering at China University of Geosciences (Wuhan) in 2021, supervised by prof. Liangxiao Jiang. Currently, I’m a lecturer and research supervisor in School of Computer Science and Engineering at Wuhan Institute of Technology. From Dec 2019 to Dec 2020, I visited the Intelligent Geospatial Data Mining Lab of University of Calgary, supervised by prof. Xin Wang.
嗨,我是龚芳。2021年毕业于中国地质大学(武汉)控制科学与工程专业,获工学博士学位,导师是蒋良孝教授。目前,我就职于武汉工程大学计算机科学与工程学院,担任讲师,硕士生导师。2019年12月到2020年12月,我在卡尔加里大学智能地理数据挖掘实验室进行访问学习,导师是王欣教授。
Research Interest
Currently, I am broadly interested in data mining and machine learning. In particular, the goal is to learn a good distance metric for nominal attributes to achieve categorical data classification. The difficulties of learning a good distance metric for nominal attributes lies in, but not limited to, how to characterize the attribute dependencies, how to distinguish the different importance among attributes, how to improve the awareness of multi-class imbalance, how to learn from small samples, how to learn in weakly supervised scenarios, and so on. We wish to develop the effective and efficient methods about stucture extension, attribtue weighting, cost-sensitive attribute selection, incremental learning, meta-learning, semi-supervised learning to tackle these challenges.
目前,我的研究兴趣是数据挖掘和机器学习。尤其是,学习一个好的名词性属性距离度量来进行分类数据分类。学习一个好的名词性属性距离度量的困难在于(但不仅限于),如何刻画属性间的依赖关系,如何区分不同属性的重要性,如何提高距离度量的类不平衡感知能力,如何从小样本中学习,如何在弱监督场景下学习等等。我们希望设计有效且快速的结构扩展、属性加权、代价敏感属性选择、增量学习、元学习、半监督学习方法来解决这些挑战。
News
✌️ 2023.06-Congratulations! Our paper “Using differential evolution for an attribute-weighted inverted specific-class distance measure for nominal attributes” is accepted in Data Mining and Knowledge Discovery (CCF-B, IF4.8). It’s my first work in Wuhan Institute of Technology.
祝贺!我们的工作“基于差分演化属性加权的反转类指定距离度量”被录取到了Data Mining and Knowledge Discovery (CCF-B, IF4.8)。这是我加入武汉工程大学后的第一个工作。
✌️ 2022.08-I have joined the Causality and Uncertainty in Artificial Intelligence Committee of Chinese Association for Artificial Intelligence as the communication committee member and I will try my best to serve the committee in the future!
我已经加入中国人工智能学会因果与不确定性人工智能专委会担任通讯委员,未来我将尽全力为专委会做好服务工作!
✌️ 2022.06-I have joined in School of Computer Science and Engineering at Wuhan Institute of Technology as a lecturer. A new start, fighting!
我已经加入武汉工程大学计算机科学与工程学院担任讲师,新的开始,加油!
✌️ 2021.08-Congratulations! Our paper “Fine-grained attribute weighted inverted specific-class distance measure for nominal attributes” is accepted in Information Sciences (CCF-B, IF8.1). It’s my first work in Unibersity of Calgary as a visiting student. Keep on fighting!
祝贺!我们的工作“细粒度属性加权的反转类指定距离度量”被录取到了Information Sciences (CCF-B, IF8.1)。这是我以访问学生身份在卡尔加里大学的第一个工作,继续加油!
✌️ 2020.03-Congratulations! Our paper “Gain ratio weighted inverted specific-class distance measure for nominal attributes” is accepted in International Journal of Machine Learning and Cybernetics (CCF-B, IF5.6).
祝贺!我们的工作“增益率加权的反转类指定距离度量”被录取到了International Journal of Machine Learning and Cybernetics (CCF-B, IF5.6)。
✌️ 2019.09-Congratulations! Our paper “Averaged one-dependence inverted specific-class distance measure for nominal attributes” is accepted in Journal of Experimental & Theoretical Artificial Intelligence (CCF-B, IF3.9).
祝贺!我们的工作“平均一依赖的反转类指定距离度量”被录取到了Journal of Experimental & Theoretical Artificial Intelligence (CCF-C, IF3.9)。
✌️ 2017.09-I join the CUGMinner team and start my research career in the field of data mining and machine learning. Remember this day, well begun is half done!
今天我加入了“地大矿工”团队,开启了我在数据挖掘和机器学习领域的研究生涯。一定要记住这个日子,好的开始是成功的一半!